addenda and errata

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[(6-Chloro-2-pyridyl)methoxy]-3-(2,4dichlorophenyl)-1-oxaspiro[4.5]dec-3en-2-one. Corrigendum

Liang-zhong Xu,* Jin Huang, Qun-qun Su and Wei Guo

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: qknhs@yahoo.com.cn

Received 16 June 2009; accepted 17 June 2009

The chemical name of the title compound in the paper by Xu, Huang & Guo [*Acta Cryst.* (2009), E**65**, 0846] is corrected and the structural diagram is updated.

In the paper by Xu, Huang & Guo [*Acta Cryst.* (2009), E**65**, 0846], the chemical name given in the *Title* should be '4-[(6-Chloro-3-pyridyl)methoxy]-3-(2,4-dichlorophenyl)-1-oxa-spiro[4.5]dec-3-en-2-one'. An updated structural diagram is shown below.

organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[(6-Chloro-2-pyridyl)methoxy]-3-(2,4dichlorophenyl)-1-oxaspiro[4.5]dec-3en-2-one

Liang-zhong Xu,* Jin Huang, Qun-gun Su and Wei Guo

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: gknhs@yahoo.com.cn

Received 3 March 2009; accepted 19 March 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.089; data-to-parameter ratio = 13.9.

In the title compound, $C_{21}H_{18}Cl_3NO_3$, the cyclohexane ring is in a chair conformation. The five-membered ring forms a dihedral angle of $69.89(2)^{\circ}$ with the benzene ring. The dihedral angle between the benzene and pyridine rings is 14.03 (7)°.

Related literature

For the biological activity of the title compound and a similar structure, see: Thomas et al. (2003). For its preparation, see: Lu et al. (2008); Sarcevic et al. (1973). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

C ₂₁ H ₁₈ Cl ₃ NO ₃	V = 1989.5 (7) Å ³
$M_r = 438.71$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 7.2457 (14) Å	$\mu = 0.48 \text{ mm}^{-1}$
b = 13.108 (3) Å	$T = 113 { m K}$
c = 21.054 (4) Å	$0.18 \times 0.12 \times 0.06 \; \mathrm{mm}$
$\beta = 95.77 \ (3)^{\circ}$	

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.918, T_{\max} = 0.972$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	253 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
3519 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

14740 measured reflections

 $R_{\rm int} = 0.041$

3519 independent reflections

3191 reflections with $I > 2\sigma(I)$

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2196).

References

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358. Lu, Y., Tao, J. Z. & Zhang, Z. R. (2008). Chem. Intermed. 10, 25-28. Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sarcevic, N., Zsindely, J. & Schmid, H. (1973). Helv. Chim. Acta, 56, 1457-1476. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Thomas, B., Jordi, B. B., Reiner, F. & Ralf, N. (2003). Chimia, 57, 697-701.

supplementary materials

Acta Cryst. (2009). E65, 0846 [doi:10.1107/S1600536809010101]

4-[(6-Chloro-2-pyridyl)methoxy]-3-(2,4-dichlorophenyl)-1-oxaspiro[4.5]dec-3-en-2-one

L. Xu, J. Huang, Q. Su and W. Guo

Comment

The goal of the synthesis of the title compound (I) is to obtain compounds with biological activity (Thomas *et al.*, 2003). We report here the crystal structure of (I), Fig.1.The cyclohexane ring is a chair conformation [Puckering Amplitude (Q_T) = 0.5531 (18) Å, θ = 4.39 (19) °, φ = 142 (3) °] (Cremer & Pople, 1975).The five membered ring form a dihedral angle of 69.89 (2)° with the benzene ring. In the crystal structure, the molecular packing is stabilized by one intermolecular C—H···O hydrogen bond.

Experimental

3-(2,4-Dichlorophenyl)-2,4-dioxo-1-oxaspiro[4.5]decane (6.26 g ;20.0 mmol), was suspended in a solution of sodium carbonate (1.08 g ;10.2 mmol) in 40 ml of water in a flask equipped with stirrer, water separator and reflux condenser. Toluene (80 ml) was added after 0.5 h, the mixture was heated to dehydration. Then 2-chloro-6-(chloromethyl)pyridine 3.56 g (22.0 mmol) and *N*,*N*-dimethylformamide(DMF) (40 ml) were added while maintaining the temperature at 100° C for 4 h. Upon cooling at room temperature. Then water (40 ml) was added. The mixture was extracted with CH₂Cl₂ (35 ml) and the organic layer was washed with water and dried over sodium sulfate. The excess CH₂Cl₂ was removed on a water vacuum pump to obtain the oil product which was crystallized from methanol to afford the title compound 7.89 g (90% yield) (Lu *et al.*, 2008; Sarcevic *et al.*, 1973). Single crystals suitable for X-ray measurement were obtained by recrystallization from the mixture of acetone and methanol at room temperature.

Refinement

All C-bound H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ for the aryl and methylene H atoms.

Figures

Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.

4-[(6-Chloro-2-pyridyl)methoxy]-3-(2,4-dichlorophenyl)-1-oxaspiro[4.5]dec-\ 3-en-2-one

Crystal data	
C ₂₁ H ₁₈ Cl ₃ NO ₃	$F_{000} = 904$
$M_r = 438.71$	$D_{\rm x} = 1.465 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 5265 reflections
<i>a</i> = 7.2457 (14) Å	$\theta = 1.6 - 28.0^{\circ}$
b = 13.108 (3) Å	$\mu = 0.48 \text{ mm}^{-1}$
c = 21.054 (4) Å	T = 113 K
$\beta = 95.77 \ (3)^{\circ}$	Platelet, colourless
V = 1989.5 (7) Å ³	$0.18\times0.12\times0.06~mm$
Z = 4	

Data collection

Rigaku Saturn diffractometer	3519 independent reflections
Radiation source: rotating anode	3191 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.041$
T = 113 K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$h = -8 \rightarrow 8$
$T_{\min} = 0.918, \ T_{\max} = 0.972$	$k = -15 \rightarrow 15$
14740 measured reflections	$l = -25 \rightarrow 25$
Monochromator: confocal T = 113 K ω scans Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\text{min}} = 0.918, T_{\text{max}} = 0.972$ 14740 measured reflections	$R_{int} = 0.041$ $\theta_{max} = 25.0^{\circ}$ $\theta_{min} = 1.8^{\circ}$ $h = -8 \rightarrow 8$ $k = -15 \rightarrow 15$ $l = -25 \rightarrow 25$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.089$	$w = 1/[\sigma^2(F_o^2) + (0.053P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
3519 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
253 parameters	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	-0.28480 (7)	-0.08999 (4)	0.06950 (2)	0.03906 (15)
C12	-0.06561 (6)	0.21586 (3)	0.228775 (19)	0.02533 (13)
C13	0.36534 (7)	0.22352 (4)	0.06907 (2)	0.03617 (15)
01	0.00146 (14)	0.14206 (8)	0.42592 (5)	0.0204 (3)
O2	-0.26135 (15)	0.13568 (9)	0.35960 (5)	0.0248 (3)
03	0.35068 (14)	0.00872 (8)	0.35405 (5)	0.0226 (3)
N1	0.4102 (2)	0.18419 (11)	0.19104 (7)	0.0264 (3)
C1	0.1925 (2)	0.10733 (12)	0.42562 (7)	0.0188 (3)
C2	0.3193 (2)	0.20111 (12)	0.42615 (8)	0.0239 (4)
H2A	0.4436	0.1795	0.4190	0.029*
H2B	0.2745	0.2464	0.3915	0.029*
C3	0.3264 (2)	0.25889 (13)	0.48925 (8)	0.0275 (4)
H3A	0.2050	0.2870	0.4944	0.033*
H3B	0.4135	0.3150	0.4889	0.033*
C4	0.3862 (3)	0.18769 (13)	0.54514 (8)	0.0292 (4)
H4A	0.5117	0.1641	0.5416	0.035*
H4B	0.3862	0.2251	0.5849	0.035*
C5	0.2574 (2)	0.09592 (13)	0.54645 (8)	0.0259 (4)
H5A	0.1351	0.1188	0.5551	0.031*
H5B	0.3042	0.0502	0.5806	0.031*
C6	0.2430 (2)	0.03854 (12)	0.48280 (7)	0.0211 (4)
H6A	0.3608	0.0058	0.4780	0.025*
H6B	0.1498	-0.0145	0.4835	0.025*
C7	0.1869 (2)	0.05012 (11)	0.36345 (7)	0.0182 (3)
C8	0.3726 (2)	-0.04708 (12)	0.29626 (8)	0.0251 (4)
H8A	0.2760	-0.0984	0.2901	0.030*
H8B	0.4911	-0.0822	0.3010	0.030*
C9	0.3640 (2)	0.01985 (12)	0.23785 (8)	0.0221 (4)
C10	0.3138 (2)	-0.02018 (13)	0.17760 (8)	0.0285 (4)
H10	0.2810	-0.0886	0.1730	0.034*
C11	0.3125 (2)	0.04149 (14)	0.12452 (8)	0.0293 (4)
H11	0.2799	0.0162	0.0837	0.035*
C12	0.3619 (2)	0.14262 (13)	0.13470 (8)	0.0254 (4)

supplementary materials

0.4111 (2)	0.12222 (13)	0.24178 (8)	0.0247 (4)
0.4453	0.1496	0.2820	0.030*
0.0183 (2)	0.05485 (11)	0.33042 (7)	0.0185 (3)
-0.0991 (2)	0.11385 (12)	0.37036 (7)	0.0199 (4)
-0.0574 (2)	0.01791 (12)	0.26666 (7)	0.0190 (3)
-0.0880 (2)	-0.08572 (12)	0.25352 (8)	0.0233 (4)
-0.0618	-0.1332	0.2860	0.028*
-0.1565 (2)	-0.11919 (13)	0.19334 (8)	0.0263 (4)
-0.1736	-0.1885	0.1853	0.032*
-0.1993 (2)	-0.04852 (13)	0.14529 (8)	0.0253 (4)
-0.1746 (2)	0.05474 (12)	0.15634 (8)	0.0229 (4)
-0.2048	0.1020	0.1240	0.027*
-0.1040 (2)	0.08598 (11)	0.21652 (8)	0.0185 (3)
	$\begin{array}{c} 0.4111\ (2)\\ 0.4453\\ 0.0183\ (2)\\ -0.0991\ (2)\\ -0.0574\ (2)\\ -0.0880\ (2)\\ -0.0618\\ -0.1565\ (2)\\ -0.1736\\ -0.1993\ (2)\\ -0.1746\ (2)\\ -0.2048\\ -0.1040\ (2) \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0450 (3)	0.0442 (3)	0.0269 (3)	-0.0021 (2)	-0.0017 (2)	-0.0110 (2)
Cl2	0.0338 (3)	0.0155 (2)	0.0269 (2)	0.00057 (16)	0.00361 (19)	0.00429 (15)
C13	0.0350 (3)	0.0439 (3)	0.0300 (3)	-0.0021 (2)	0.0051 (2)	0.00633 (19)
01	0.0162 (6)	0.0236 (6)	0.0215 (6)	0.0040 (5)	0.0021 (5)	0.0022 (5)
02	0.0166 (6)	0.0297 (6)	0.0280 (6)	0.0052 (5)	0.0021 (5)	0.0069 (5)
03	0.0187 (6)	0.0257 (6)	0.0233 (6)	0.0067 (5)	0.0016 (5)	-0.0029 (5)
N1	0.0241 (8)	0.0266 (8)	0.0287 (8)	-0.0017 (6)	0.0034 (6)	-0.0031 (6)
C1	0.0152 (8)	0.0185 (8)	0.0226 (8)	0.0032 (6)	0.0020 (7)	0.0025 (6)
C2	0.0237 (9)	0.0211 (8)	0.0276 (9)	-0.0004 (7)	0.0062 (7)	0.0020 (7)
C3	0.0257 (10)	0.0208 (9)	0.0361 (10)	-0.0019 (7)	0.0043 (8)	-0.0039 (7)
C4	0.0313 (10)	0.0279 (9)	0.0277 (10)	-0.0004 (8)	-0.0006 (8)	-0.0068 (8)
C5	0.0262 (9)	0.0291 (9)	0.0221 (9)	0.0026 (7)	0.0002 (7)	0.0017 (7)
C6	0.0186 (8)	0.0201 (8)	0.0242 (9)	0.0013 (7)	-0.0005 (7)	0.0018 (7)
C7	0.0181 (8)	0.0148 (8)	0.0220 (8)	0.0015 (6)	0.0034 (7)	0.0037 (6)
C8	0.0233 (9)	0.0229 (9)	0.0292 (9)	0.0074 (7)	0.0027 (7)	-0.0058 (7)
C9	0.0156 (8)	0.0231 (9)	0.0279 (9)	0.0034 (7)	0.0038 (7)	-0.0053 (7)
C10	0.0291 (10)	0.0248 (9)	0.0326 (10)	-0.0035 (7)	0.0083 (8)	-0.0096 (8)
C11	0.0289 (10)	0.0354 (10)	0.0240 (9)	-0.0051 (8)	0.0050 (7)	-0.0105 (8)
C12	0.0168 (9)	0.0346 (10)	0.0255 (9)	-0.0004 (7)	0.0051 (7)	-0.0024 (7)
C13	0.0210 (9)	0.0291 (9)	0.0237 (9)	-0.0018 (7)	0.0009 (7)	-0.0071 (7)
C14	0.0182 (8)	0.0152 (8)	0.0221 (8)	0.0000 (6)	0.0020 (7)	0.0047 (6)
C15	0.0219 (9)	0.0170 (8)	0.0207 (8)	-0.0012 (7)	0.0019 (7)	0.0071 (6)
C16	0.0158 (8)	0.0186 (8)	0.0226 (8)	-0.0003 (6)	0.0022 (7)	0.0024 (6)
C17	0.0223 (9)	0.0184 (8)	0.0290 (9)	-0.0011 (7)	0.0019 (7)	0.0048 (7)
C18	0.0257 (10)	0.0199 (9)	0.0332 (10)	-0.0032 (7)	0.0031 (8)	-0.0023 (7)
C19	0.0220 (9)	0.0300 (9)	0.0237 (9)	-0.0023 (7)	0.0015 (7)	-0.0054 (7)
C20	0.0202 (9)	0.0267 (9)	0.0218 (8)	0.0022 (7)	0.0030 (7)	0.0039 (7)
C21	0.0175 (8)	0.0150 (8)	0.0234 (9)	0.0009 (6)	0.0041 (7)	-0.0003 (6)
~	(9					

Geometric parameters (Å, °)

Cl1—C19	1.7398 (17)	С6—Н6А	0.9700

Cl2—C21	1.7400 (16)	С6—Н6В	0.9700
Cl3—C12	1.7440 (17)	C7—C14	1.345 (2)
O1—C15	1.366 (2)	C8—C9	1.507 (2)
01—C1	1.4577 (18)	C8—H8A	0.9700
O2—C15	1.2090 (19)	C8—H8B	0.9700
O3—C7	1.3375 (18)	C9—C13	1.385 (2)
O3—C8	1.4421 (18)	C9—C10	1.387 (2)
N1—C12	1.320 (2)	C10—C11	1.378 (2)
N1—C13	1.342 (2)	C10—H10	0.9300
C1—C7	1.505 (2)	C11—C12	1.384 (2)
C1—C6	1.519 (2)	C11—H11	0.9300
C1—C2	1.534 (2)	C13—H13	0.9300
C2—C3	1.526 (2)	C14—C15	1.474 (2)
C2—H2A	0.9700	C14—C16	1.480 (2)
C2—H2B	0.9700	C16—C21	1.398 (2)
C3—C4	1.530 (2)	C16—C17	1.400 (2)
С3—НЗА	0.9700	C17—C18	1.385 (2)
С3—Н3В	0.9700	C17—H17	0.9300
C4—C5	1.524 (2)	C18—C19	1.384 (2)
C4—H4A	0.9700	C18—H18	0.9300
C4—H4B	0.9700	C19—C20	1.382 (2)
C5—C6	1.531 (2)	C20—C21	1.380 (2)
С5—Н5А	0.9700	C20—H20	0.9300
С5—Н5В	0.9700		
C15—O1—C1	109.69 (12)	С9—С8—Н8А	108.9
С7—О3—С8	120.36 (13)	O3—C8—H8B	108.9
C12—N1—C13	116.43 (15)	С9—С8—Н8В	108.9
O1—C1—C7	102.52 (12)	H8A—C8—H8B	107.7
O1—C1—C6	109.58 (12)	C13—C9—C10	117.49 (15)
C7—C1—C6	112.12 (13)	C13—C9—C8	121.71 (15)
O1—C1—C2	108.54 (12)	C10—C9—C8	120.77 (15)
C7—C1—C2	111.66 (12)	С11—С10—С9	119.95 (16)
C6—C1—C2	111.93 (14)	C11-C10-H10	120.0
C3—C2—C1	111.83 (13)	С9—С10—Н10	120.0
С3—С2—Н2А	109.2	C10-C11-C12	117.11 (16)
C1—C2—H2A	109.2	C10-C11-H11	121.4
С3—С2—Н2В	109.2	C12-C11-H11	121.4
C1—C2—H2B	109.2	N1—C12—C11	125.13 (16)
H2A—C2—H2B	107.9	N1—C12—Cl3	115.93 (13)
C2—C3—C4	110.44 (14)	C11—C12—Cl3	118.94 (13)
С2—С3—НЗА	109.6	N1—C13—C9	123.89 (15)
С4—С3—НЗА	109.6	N1—C13—H13	118.1
С2—С3—Н3В	109.6	С9—С13—Н13	118.1
С4—С3—Н3В	109.6	C7—C14—C15	105.99 (14)
НЗА—СЗ—НЗВ	108.1	C7—C14—C16	133.52 (14)
C5—C4—C3	111.65 (14)	C15—C14—C16	120.44 (14)
С5—С4—Н4А	109.3	O2—C15—O1	121.42 (14)
C3—C4—H4A	109.3	O2—C15—C14	128.58 (15)
C5—C4—H4B	109.3	O1-C15-C14	109.99 (13)

supplementary materials

C3—C4—H4B	109.3	C21—C16—C17	116.66 (15)
H4A—C4—H4B	108.0	C21—C16—C14	121.05 (14)
C4—C5—C6	111.10 (14)	C17—C16—C14	122.28 (14)
С4—С5—Н5А	109.4	C18—C17—C16	121.58 (15)
С6—С5—Н5А	109.4	С18—С17—Н17	119.2
C4—C5—H5B	109.4	С16—С17—Н17	119.2
C6—C5—H5B	109.4	C19—C18—C17	119.35 (15)
H5A—C5—H5B	108.0	C19-C18-H18	120.3
C1—C6—C5	113.06 (13)	C17—C18—H18	120.3
С1—С6—Н6А	109.0	C20—C19—C18	121.13 (16)
С5—С6—Н6А	109.0	C20-C19-Cl1	119.24 (13)
С1—С6—Н6В	109.0	C18—C19—C11	119.63 (13)
С5—С6—Н6В	109.0	C21—C20—C19	118.36 (15)
Н6А—С6—Н6В	107.8	C21—C20—H20	120.8
O3—C7—C14	135.67 (15)	С19—С20—Н20	120.8
O3—C7—C1	112.59 (13)	C20—C21—C16	122.90 (14)
C14—C7—C1	111.73 (13)	C20-C21-Cl2	117.74 (12)
O3—C8—C9	113.22 (12)	C16—C21—Cl2	119.32 (12)
O3—C8—H8A	108.9		
C15—O1—C1—C7	-2.79 (15)	C12—N1—C13—C9	-0.3 (2)
C15—O1—C1—C6	-122.03 (13)	C10-C9-C13-N1	0.2 (2)
C15—O1—C1—C2	115.46 (13)	C8—C9—C13—N1	178.20 (15)
O1—C1—C2—C3	68.12 (17)	O3—C7—C14—C15	179.93 (16)
C7—C1—C2—C3	-179.60 (13)	C1—C7—C14—C15	-1.50 (17)
C6—C1—C2—C3	-52.96 (18)	O3—C7—C14—C16	-2.6 (3)
C1—C2—C3—C4	55.70 (18)	C1—C7—C14—C16	175.99 (15)
C2—C3—C4—C5	-57.18 (19)	C1	-179.05 (13)
C3—C4—C5—C6	55.15 (19)	C1	2.09 (16)
O1—C1—C6—C5	-69.25 (17)	C7—C14—C15—O2	-179.10 (15)
C7—C1—C6—C5	177.61 (13)	C16—C14—C15—O2	3.0 (2)
C2—C1—C6—C5	51.22 (18)	C7-C14-C15-O1	-0.35 (16)
C4—C5—C6—C1	-52.32 (18)	C16-C14-C15-O1	-178.24 (13)
C8—O3—C7—C14	0.0 (3)	C7—C14—C16—C21	-109.1 (2)
C8—O3—C7—C1	-178.59 (12)	C15-C14-C16-C21	68.14 (19)
O1—C1—C7—O3	-178.43 (12)	C7—C14—C16—C17	71.7 (2)
C6—C1—C7—O3	-60.99 (17)	C15-C14-C16-C17	-111.08 (17)
C2—C1—C7—O3	65.55 (16)	C21-C16-C17-C18	1.7 (2)
O1—C1—C7—C14	2.66 (16)	C14—C16—C17—C18	-179.07 (15)
C6—C1—C7—C14	120.10 (15)	C16—C17—C18—C19	-1.3 (2)
C2—C1—C7—C14	-113.36 (15)	C17-C18-C19-C20	0.1 (3)
C7—O3—C8—C9	69.36 (18)	C17-C18-C19-Cl1	179.83 (12)
O3—C8—C9—C13	26.2 (2)	C18—C19—C20—C21	0.7 (2)
O3—C8—C9—C10	-155.88 (14)	Cl1—C19—C20—C21	-179.05 (12)
C13—C9—C10—C11	0.1 (2)	C19—C20—C21—C16	-0.3 (2)
C8—C9—C10—C11	-177.88 (16)	C19—C20—C21—Cl2	177.62 (12)
C9—C10—C11—C12	-0.3 (2)	C17—C16—C21—C20	-0.9 (2)
C13—N1—C12—C11	0.2 (2)	C14—C16—C21—C20	179.87 (14)
C13—N1—C12—Cl3	-178.92 (12)	C17—C16—C21—Cl2	-178.75 (12)
C10-C11-C12-N1	0.2 (3)	C14—C16—C21—Cl2	2.0 (2)

C10-C11-C12-Cl3 179.21 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
С13—Н13…О3	0.93	2.53	2.864 (2)	102

Fig. 1

